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Galvanomagnetic Effects in Antimony at Liquid-Helium Temperatures* 
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Department of Physics, Louisiana State University, Baton Rouge, Louisiana 
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Galvanomagnetic effects in a single crystal of antimony were studied at liquid-helium temperatures in mag­
netic fields up to 18 kG. A study of the Shubnikov-de Haas oscillations with respect to crystal orientation 
was made to map the Fermi surfaces of the carriers. The electron Fermi surface was found to agree with 
the tilted ellipsoid model proposed by Shoenberg. The hole Fermi surface could not be determined unam­
biguously ; the data were found to be compatible with a three-ellipsoid model. The nonoscillatory parts of 
the conductivities were analyzed on the basis of the Sondheimer-Wilson theory in the two-band model. The 
results showed an equal number of electrons and holes with the mobilities of the electrons being five times 
larger than that of the holes. The amplitudes of the oscillations in the conductivities were found to disagree 
with the Lifshitz-Kosevich theory but to agree (magnetoconductivity only) in order of magnitude with the 
ZiPberman theory. 

I. INTRODUCTION 

A COMPLETE study of the transport properties of 
a metal requires the experimental determination 

of a set of transport coefficients from which the elements 
of the electrical conductivity tensor, the thermal con­
ductivity tensor and the thermoelectric tensor can be 
computed.1"3 The present paper reports measurements 
and analyses of galvanomagnetic effects as the first part 
of such a study of antimony. 

Investigations made to determine the band structure 
of antimony include studies of the de Haas-van Alphen 
effect,4 of cyclotron resonance,5,6 of ultrasonic attenua­
tion,7,8 of the Shubnikov-de Haas effect,9 and of gal­
vanomagnetic effects both at room-temperature10,11 and 

FIG. 1. Tilted ellipsoid model for electrons. 
The angle of tilt being 36°. 
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at liquid-helium temperatures.12 Experimental re­
sults4,10,11 indicate a carrier density of the order of 10~"3 

per atom. Theoretical considerations13 show that the 
Fermi surfaces for such low carrier densities are nearly 
ellipsoidal. 

A model for the electron part of the Fermi surface was 
first established experimentally from the de Haas-van 
Alphen oscillations.4 The electron Fermi surfaces consist 
of three ellipsoids in momentum space with their centers 
lying on the binary axes in the basal (1-2) plane as 
shown in Fig. 1. Each ellipsoid is tilted by an angle 36° 
out of the basal plane toward the trigonal axis. Figure 2 
defines the coordinate system with respect to the crystal 
axes. 

An indication of the existence of holes was found by 
Datars,6 Ketterson,8 and Epstein11 but the exact shape 
of the Fermi surfaces for holes is still uncertain. In the 
present work, both electrons and holes were found. The 
data are interpreted on the basis of the usual set of 
three ellipsoids for electrons. Two alternative inter­
pretations are proposed for the holes, first, three 
ellipsoid Fermi surfaces analogous to the electron 
ellipsoids and second, a two-hole band model. 

The galvanomagnetic effects in antimony measured 
at liquid-helium temperatures were analyzed on the 
basis of present theories. The oscillations in magneto-

TRIGONAL AXIS 

BINARY AXIS 

i BISECTRIX AXIS 

£~7\ 

zd a) 

T(2) 

FIG. 2. Position of 
symmetry axes with 
respect to the sample. 
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FIG. 3. Period P versus angle 0 
where P is the oscillation period with 
the binary axis normal to H and 6 the 
angle between the trigonal axis and E. 
The curves are the least-squares fit of 
Eq. (6). 

-100 -80 - 4 0 - 2 0 20 40 60 80 100 

9 (DEGREES) 

resistance were decomposed into Shubnikov-de Haas 
oscillations, periodic in 1/H. The periods of these oscil­
lations at different orientations of the crystal with re­
spect to the magnetic field were interpreted to deter­
mine the Fermi surfaces for the carriers in the metal, 
Sec. I I . The gross effects upon which the oscillations 
superimpose were analyzed on the basis of the Sond-
heimer-Wilson theory in the two-band model, Sec. I I I . 
The oscillations in the conductivities are discussed in 
Sec. IV. 

Details and references to additional detailed informa­
tion on the experimental sample, arrangements, and 
techniques are given in the Appendix. 

II. STUDY OF THE DEPENDENCE OF THE 
SHUBNIKOV-DE HAAS EFFECT ON 

CRYSTAL ORIENTATION 

A. Experimental Results 

The equation of a tilted ellipsoidal Fermi surface 
segment in momentum space with the center of the 
ellipsoid taken as the origin of the coordinate system is 

aupi2+a22p22+azzpz2+2a2zp2pz= 2w0f o, (1) 

where the subscripts 1, 2, 3 refer to binary, bisectrix and 
trigonal directions, respectively; fo is the chemical 
potential of the carriers, and mo is the mass of the free 
electron. The a's are the elements of the tensor 
a=Worn*-1, where w*_1 is the inverse effective mass 
tensor; & has the form 

The other two ellipsoids of the three ellipsoid set are 
obtained by rotation of Eq. (1) through ±120° about 
the trigonal axis. 

The Shubnikov-de Haas oscillations are analyzed into 
components, each component periodic in 1/H. The 
period of each component is given in terms of an 
extremal area Sm of a planar cross section of the Fermi 
surface 

P—eh/cSm, (3) 

where the planar area Sm is perpendicular to the mag­
netic field direction. The area Sm for the ellipsoid of 
Eq. (1) is written in polar coordinates; the period P is 
then expressed as 

P2=IA cos20+B(sinfy+C cos2^) sin20 
— 2Z) sin0 cos<9 sin£] (4) 

where 
A = (eh/2nt0c£o)2aiia22, 

B= (eh/2moC^o)2anan, 

C= (eh/2rnocU)2((Z22Uzz—GLn2), 

Z)= (eh/2tn0cto)2ana2t, 

(5) 

<$= 
"an 0 0 " 

, 0 a2z an. 
(2) 

6 is the angle between the magnetic field and the trigonal 
axis, and \p is the azimuthal angle. The two other 
ellipsoids give rise to periods with similar expressions in 
which \p is replaced by ^±120° . 

Experiments were performed with the field orienta­
tion in three different crystallographic planes. The 
crystal was placed in the cryostat in the following 
positions: 

(i) With the binary axis vertical so that H horizontal 
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FIG. 4. Period Q versus angle 6 
where Q is the period of the oscillation 
in 1/H with the bisectrix axis normal 
to H and 6 the angle between the 
trigonal axis and H. The curves are the 
least-squares fit of Eq. (7). 
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was in the (2-3) plane, Eq. (4) reduces in this case to 

^=90° , P^=A cos20+P sin20-2Z> sin0 cos0; 

1^=210°, P^A cos20+i(£+3C) sin20 
+Z>sin0cos0; (6) 

^ = - 3 0 ° , P 8
2 =iV; 

where Pi, P2, Pz are the periods corresponding to the 
three ellipsoids. The data for the P's are given in Fig. 3. 

(ii) With the bisectrix vertical and the field in (1-3) 
plane, Eq. (4) becomes 

^ = 0 , Qx^A cos20+C sin20; 

>P= 120°, Q2*=A cos20+i(3^+C) sin20 
+vlDsin0cos0; (7) 

,/,= -120° , Qi=A cos20+i(3£+C) sin
20 

—v3Z> sin0 cos0; 

where Qi, Q2, and Qz are the periods of the three 
ellipsoids under condition (ii). The data for the Q's are 
given in Fig. 4. 

(iii) With the trigonal axis vertical and the field in 
(1-2) plane, Eq. (4) is 

£ i 2 =£smY+CcosV; 

R2
2=B sin2OH-120)+C cos2(^+120); (8) 

P 3
2=P sin2(iA-120)+Ccos2(iA-120); 

where the periods here are denoted by Pi, R2, and P3. 
The data for the P's are given in Fig. 5. 

The above nine equations for the periods were used 
for the determination of A, B, C, and D from the 
experimental data. The values were obtained as the 
weighted average of values determined for each curve by 
least-square fitting to the curve, the weighting being 

proportional to the number of data for the curve. The 
period for the holes at 0=0, case (i) and Fig. 3, and the 
periods for the electrons at 0= —90°, case (ii) and Fig. 4, 
and at ^=0°, case (iii) and Fig. 5, were either too small 
to observe or too complicated to analyze. The parameter 
C presented some difficulty. Values for C were obtained 
as the \(/=0 intercepts of straight lines fitted to the R 
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FIG. 5. Period R versus angle \[/ where R is the period of the 
oscillation in l/H with the trigonal axis normal to H and ^ is the 
angle between the binary and H. The curves are the least-squares 
fit of Eq. (8). 
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CD 
FIG. 6. Plot of R2 

versus 1 — cosV for de­
termination of param­
eter C. The intercept of 
the least-squares fitted 
straight line gives the 
value of C. 

TABLE III . Comparison of a tensor elements, chemical potential £*0, 
and density of carriers n for electrons. 

Reference 

Present work 
Eckstein* 
Datarb 

Shoenberg0 

Juretschked 

a n 

19.1 
16.7 
20.0e 

20.0 

CK22 « 3 3 

6.3 11.3 
5.98 11.61 
6.05e 11.9e 

10.0 5.2 

a See Ref. 7. 
»> See Ref. 5. 
0 See Ref. 4. 
dSee Ref. 11. 
e Computed from author's data with fo 

To n 
«23 (10~14erg) (1019cm-3) 

7.8 20.3 4.15 
7.54 18.6 
7.79e 

6.5 18.0 3.7 
20.8 4.3 

=20.3 X10-" erg assumed. 

data plotted as R2 versus cosV, Fig. 6. The value of A 
for holes could not be determined; a value 9X10~14 G~2 

was assumed. The experimental values of A, B, C, and 
D are given in Table I. The curves drawn in Figs. 3-5 
are given by Eqs. (6)-(8) for these values. 

For the determination of f o, the temperature depend­
ence of the amplitudes (a for electrons, and b for holes) 
of the oscillations in magnetoresistance, was studied at 
0=-101.3° and (9=0°. At 0=-101.3°, both electrons 

TABLE I. Coefficients A, 
in units 

A 

Electrons 101 
Holes 9.0 

(assumed) 

B, C, D for electrons and holes 
of (10~14 G-2). 

B C 

180 8.4 
212 22 

D 

124 
12.7 

and holes were observed; at 6=0°, only electrons were 
observed, see Fig. 3. For a particular carrier, the plot 
of ln(a/r) versus T is linear in the first approxima­
tion. A slight deviation from linearity of the form 
e-\/T j s expected for X/T not negligibly small where 
\—2ir2kT{c/e%^{m:¥/H). The data were corrected for 
this nonlinearity, then plotted in Fig. 7. The double-
effective Bohr magneton /3* and fo were computed from 
the relations 

P=2*k/Hs, 
fo=/S*/P, 

where s is the slope of the line in Fig. 7. The effective 
mass was also estimated from 

m*=eh/p*c. (10) 

The values of f o and m* are given in Table II. 

TABLE II . Chemical potential ft and effective mass nt* for 
electrons and holes from the temperature dependence of the pn 
oscillation amplitudes. 

Orientation 
6 

(deg) 

Electrons 

m*/mo (10~14 erg) 

Holes 
ft 

m*/mo (10~14erg) 

B. Electron Band Structure 

The periods P's, Q's, and R's for a three-ellipsoid set 
of Fermi surfaces describe the electrons quite well as 
evident in Figs. 3-5. Each ellipsoid is tilted out of the 
basal plane with its major axis at 36° with respect to 
the basal plane as seen from period Pi having a minimum 
at 36° and a maximum at —54° and period Q\ having a 
minimum (extrapolated) at ~ —90°. 

The components of the tensor a as computed from 
the data in Tables I and II, the chemical potential f o, 
and the electron population n as computed from 

n= (3T2)-1(2e/chy/2lC(AB-D2)']-m (11) 

are given in Table III. For comparison, the previously 

TABLE IV. Cyclotron and effective masses for electrons. 

Present work 
Ecksteina 

Datarsb 

Shoenberg0 

Smith* 

mVwo 
Bisec-

Trigonal Binary trix 

0.090 0.31 0.069 
0.1 
0.088 ±0.005 0.31 0.068 
0.071* 

• • • 0.088 

Components of effective 
mass tensor in units 

Wl 

0.052 
0.68 

0.05 
0.05 

of mo 
m% m% rm 

1.09 0.64 0.75 
0.92* 0.48" 0.6« 
1.03 0.53 0.67 
1.0 0.52 0.65 

a See Ref. 7. 
b See Ref. 5. 
0 See Ref. 4. 
d G. E. Smith, J. K. Gait, and F. R. Merritt, Phys. Rev. Letters, 4, 276 

(1960). 
e Computed from the authors' data. 

FIG. 7. Plot of 
\n\_{a,b)/T~] versus T 
for determination of 
the chemical poten­
tial fo by Eq. (9). 
(a,b) denote the am­
plitude of the oscilla­
tions at 0=-101 .3° 
where a is the ampli­
tude for electrons 
and b for holes. 
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FIG. 8. Alternate 
scheme for the hole 
Fermi surface. Com­
pare with Fig. 5. 
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reported values are also given in Table III. The agree­
ment is good. 

The cyclotron masses are computed from the relation 

m*=(eh/c)/tiA(\/B), (12) 

where A(l/H) is the period in 1/H of the appropriate 
oscillation; these results are given in the first three 
columns of Table IV. The components of the effective 
mass tensor as obtained from the inversion of the a 
tensor are given in the last four columns of the table. 
The agreement between the present results and those in 
the literature is evident from Table IV. 

C. Hole Band Structure 

With the assumption of a three-ellipsoid set of Fermi 
surfaces for holes analogous to those for electrons, corre­
sponding results for the a tensor elements, chemical 
potential, carrier density, and cyclotron and effective 
masses are obtained for holes, see Tables V and VI. 
All that can be deduced from comparison with the 
scanty amount of previously reported data is that the 
present results are reasonable. 

The curves labeled "holes" drawn in Figs. 3-5 are the 
analytic results of the three-ellipsoid Fermi surface 
assumption for the present experimental values of A, 
B, C, and D. As evident, the available data points fit the 
curves well; however, the number of data points is not 

TABLE V. Comparison of & tensor elements, chemical potential ft, 
and density of carriers n for holes. 

an «22 «33 a2S (10-" erg) (1019cm-3) 

Present work 
Datarsa 

Juretschkeb 

Freedman0 

6.0 0.7 17.3 1.0 13.0 

9.6 

3.80 

4.3 
3.7 

a See Ref. 6. 
bSee Ref. 11. 
0 See Ref. 10. 

Present work 

Datarsa 

Juretschkeb 

» See Ref. 6. 
bSee Ref. 11. 

m*/tno 
Bisec-

Trigonal Binary trix 

0.48 0.11 0.098 
0.303 

0.32 +0.02 
0.11 ±0.005 
0.34 

Components of effective 
mass tensor in units of wo 

wi mt m% m\ 

0.154 1.47 0.06 0.006 

sufficient to define the curves. Figure 3 has no data 
points in the lower "holes" curve; Fig. 4, no points on 
the lower "holes" curve for O<0<8O°; and Fig. 5 con­
tains so few data that an alternate set of "holes" curves 
are possible, for example, those drawn in Fig. 8. 

The "holes" curves in Figs. 3-5 correspond to 
ellipsoidal surfaces shown schematically in Fig. 9(a). 
The alternative curves shown in Fig. 8 correspond to 
surfaces shown in Figs. 9(b)-9(d). These surfaces are 
those of a two-band model with one band being actually 
two, almost degenerate bands. The large mass band is 
that of the "star" surface of Fig. 9(b); the two, almost 
degenerate bands, are those of the "triangle" surfaces in 
Figs. 9(c) and 9(d). The relation of these surfaces to the 
ellipsoidal ones considered in the foregoing is best under­
stood from careful comparison of Figs. 9 (a)-9(d). A 

THREE ELLIPSOIDAL 

SURFACES 

(b) 

"STAR" SURFACE 

FIRST "TRIANGLE 

SURFACE 

(d) 

SECOND "TRIANGLE" 

SURFACE 

I I SURFACE CONTRIBUTIONS FROM ELLIPSOID I 

S SURFACE CONTRIBUTIONS FROM ELLIPSOID 2 

• SURFACE CONTRIBUTIONS FROM ELLIPSOID 3 

FIG. 9. (a) Three ellipsoid Fermi surface model such as would 
give holes' curves in Fig. 5. (b) "Star" Fermi surface as formed 
essentially from portions of the three ellipsoidal surfaces. This sur­
face would result in the lower holes' curve in Fig. 8. (c) and (d) 
"Triangle" Fermi surfaces as formed from portions of the three 
ellipsoidal surfaces. These surfaces are degenerate and would 
result in the upper holes' curve in Fig. 8. 
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FIG. 10. Han versus 
H for T = 4.2°K. Solid 
curve is least-squares fit 
for a two band, the 
dotted curves being the 
individual band con­
tributions. 

IOOOO' 

third possibility is the replacement of the two "triangle" m . STUDY OF THE MAGNETIC FIELD DEPENDENCE 
^ J F & OF THE NONOSCILLATORY PARTS OF THE 

surfaces by another "star." The present data do not 
warrant further discussion of these possibilities. How­
ever, one of these alternate band structures may furnish 
an explanation for the two cyclotron masses for holes 
found by Datars.6 

ELECTRICAL CONDUCTIVITIES 

A. Experimental Resul ts 

The coefficients of magnetoresistance pn and Hall-
resistance P21 were measured with the current in the 
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FIG. 12. Hdn versus H for JT = 2 . 1 ° K . 
Solid curve is least-squares fit for a 
two band, the dotted curves being the 
individual band contributions. 
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binary direction and the magnetic field along the 
trigonal axis. The corresponding elements of the con­
ductivity tensor were computed as 

0 i i = p n / ( p i i 2 + p 2 i 2 ) 

0-12=P2l/(pil2+p212), 
(13) 

where an and an are the magnetoconductivity and the 
Hall conductivity, respectively. The nonoscillatory 
parts of (Tn and an, denoted as an and an, respectively, 

were separated from the oscillatory parts and the 
quantities Hdn and an plotted versus logH. The data 
for Hau at temperatures 4.2, 3.5, 2.1, and 1.7°K are 
given in Figs. 10-13; the data for an at the same tem­
peratures, in Figs. 14-17. The experimental arrangement 
used a set of Helmholtz coils for fields less than 100 G 
and an iron-core electromagnet for fields greater than 
100 G; the scatter in data around 100 G in Figs. 10-17 
is the unfortunate results of this change in experimental 
conditions. 

FIG. 13. Ha}l versusII for T = 1.7°K. 
Solid curve is least-squares fit for a 
two band, the dotted curves being the 
individual band contributions. 
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B. Analysis 

The non-oscillatory parts of the conductivities are 
given in the Sondheimer-Wilson14,15,16 theory as 

tf 12= ec 5Z (±)njLjH, 
(14) 

10000 

where the subscripts denote the carrier band and the 
summation is over all bands. The (± ) symbol in an 

indicates that the sign for each term is taken appropriate 
to the charge of the carrier. The quantities in the above 
are denned as follows: 

(1) The factor dj is an adjustable parameter intro-
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FIG. 15. an versus H for r = 3.5°K. 
Solid curve is least-squares fit for a 
two band, the dotted curves being the 
individual band contributions. 
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FIG. 16. a12 versus H for r=2 .1°K. 
Solid curve is least-squares fit for a 
two band, the dotted curves being the 
individual band contributions. 
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duced to account for noncircular orbits of the carriers; 
dj equals one for circular orbits and can be expressed in 
terms of the a tensor elements as 

^•=iC(«llA22)1/2+(«22/ail)1/2]. 

(2) Hj is the saturation field denned as 

Hj=cmf/erj, 

where 77 is the relaxation time in the jth band; and 
(3) Lj is the Lorentz factor 

Equation (14) is a good approximation for low field 
results but it is of interest to study its validity over the 
whole range of field covered in the present experiment. 

Two bands were assumed and the data fitted by a 
least-squares technique.17 The mean error of the fit was 
less than 5%. Attempts to use more than two bands for 
the curve fitting were unsuccessful as the iterative 
process diverged rapidly. The values of djtij and Hj ob­
tained from the an data are given in the Table VII; the 
dotted curves drawn in Figs. 10-13 show the contribu­
tions of the individual bands and the solid curve, the 
sum of the two. The values of tij and Hj obtained from 

FIG. 17. <fn versus H for r=1 .7°K. 
Solid curve is least-squares fit for a 
two band, the dotted curves being the 
individual band contributions. 
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17 H. J. Mackey, Ph.D. dissertation, Louisiana State University, 1963 (unpublished). 
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i 

TABLE VII. o/ny and Hj as determined from au and dj 
as determined from both &n and &\2. 

15 16 

H ( K G ) 

FIG. 18. Oscillations in *n at T = 1.7°K at 0 = 0. 

the an data are given in Table VI I I ; the dotted curves 
in Figs. 14-17 are the contributions of the individual 
bands and the solid curve the sum. In these, the sub­
scripts 1 denote the electron band and subscripts 2, the 
hole band. This follows from the fact that H2/H1c^5, 
that is, approximately equal to the ratio of the cyclotron 
mass (in the trigonal direction) of the carriers identified 
as holes to that of the carriers identified as electrons, 
see Sec. I I . 

There is an evident disagreement between the Hj 
determined from the an data and that from the an data. 
A second difficulty is that a\ and a2 computed from these 
data are 2.0 and 2.5, respectively; but the a's data of 
Sec. I I give a i = l . l and #2=1.7. These differences are 
not surprising in view of the great idealization of the 
Sondheimer-Wilson theory; inclusion of such effects as 
anisotropy and/or magnetic field dependence of ry and 
mf could readily account for the discrepancies. 

A simultaneous fit to both the an and an data at 
4.2°K gave the following values: 

ni— 5.05X1019 electrons/cm3, 

n2=5.05X1019 holes/cm3, 

ai^i=8.1X101 9 /cm3 , 

a2^2=13.2Xl01 9 /cm3 , 

a i = l . 6, 

#2=2.6, 

#1 = = =90.7G, 

#2=467 G. 

The mean error in the simultaneous fit was about twice 
that of the individual fits. 

The temperature dependencies of the Hj, %, and a,j 
seem strange. Particular attention is directed to the fact 
that the Hj determined from o1!! has a temperature 
dependence different than that of the Hj determined 
from an> These effects also indicate some inadequacy of 
the Sondheimer-Wilson theory for detailed treatment of 

T 
(°K) 

4.2 
3.5 
2.1 
1.7 

aim 
(lO^/cm8) 

10.7 
11.5 
12.2 
11.3 

Hi 
(G) 

115 
115 
110 
101 

ai 

2.27 
2.31 
2.58 
2.28 

#2^2 
(1019/cm3) 

10.6 
10.4 
10.5 
12.4 

# 2 

(G2) 

540 
531 
512 
453 

(iz 

2.28 
2.11 
2.24 
2.52 

antimony arising probably from the extension of this 
theory to high field. 

IV. STUDY OF THE SHUBNIKOV-DE HAAS 
OSCILLATION AMPLITUDES 

A. Experimental Results 

Pronounced Shubnikov-de Haas oscillations were 
observed in the conductivities an and 0-12, see Figs. 18 
and 19. The oscillations were studied with the field along 
the trigonal axis for fields between 13 and 18 kG. The 
data seem to indicate more than one periodic compo­
nent, especially in orn. These components were not re­
solved but at least the contributions of two roughly 
equal periods seem to be present. 

The amplitudes of the oscillations were measured and 
are given in Table IX. 

B. Analysis 

Attempts have been made to produce a theory of the 
Shubnikov-de Haas oscillations, first by Levinger and 
Grimsal,18 and later by Lifshitz and Kosevich.19 These 
considered the effects of field-dependent variations in 
carrier densities and Fermi energies of the carrier bands. 
ZiPberman20 and others21 considered effects of Landau 
quantization on the mobility of the carriers. A short 
summary of these theories is given in present notation 
by Grenier, Reynolds, and Sybert.16 

In the particular case of two bands with equal carrier 
densities, the Lifshitz-Kosevich theory under some 
simplifying assumptions17 gives the amplitude of aap, 

TABLE VIII. tij and Hj as determined from ai2. 

T 
(°K) 

4.2 
3.5 
2.1 
1.7 

» i 
(1019/cm3) 

4.71 
4.95 
4.71 
4.93 

Hi 
(G) 

86.4 
86.8 
79.2 
79.6 

fl2 

(1019/cm3) 

4.65 
4.95 
4.70 
4.93 

H2 

(G) 

492; 
457 
473J 
459 

18 J. S. Levinger, E. G. Grimsal, Phys. Rev. 94, 772 (1958). 
19 I. Lifshitz and L. M. Kosevich, Zh. Eksperim. i Teor. Fiz. 33, 

88 (1957) [translation: Soviet Phys.—JETP 6, 67 (1958)]. 
20 G. E. Zil'berman, Zh. Eksperim. i Teor. Fiz. 29, 762 (1955) 

[translation: Soviet Phys.—JETP 2, 650 (1956)]. 
21 List of references is given in the review article by A. H. Kahn 

and P. R. Frederikse in Solid State Physics, edited by F. Seitz and 
P. Turnbull (Academic Press Inc., New York, 1960), Vol. 9. 
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FIG. 19. Oscilla­
tions in 0-12 at 
r = 1 . 7 ° K a t 0 = O . 
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the oscillatory part of <rap due to the first band as 

# a/s | L -K= &ap{i (f i + f 2)"11 n/n I, (15) 

where the f's are the Fermi energies and | n | , the ampli­
tude of the variations in carrier density, is to lowest 
order in X 

\n/n\ = (fTrXlPtf^XtsinhX)-1 cos(icm*/mo), 

with P the period in H~l of the oscillation and 

\=2ir2knQ-1(PH)~l. 

The ZiPberman theory gives the amplitude of #11 for 
the present case and with an defined by Eq. (14) 

^ii\zii=o-ii<iiHi(a1Hi+a2H2) l 

X (5v2/4) (P£T)i/2X(sinhX)-1. (16) 

This contribution arises from the first band only, effects 
of the second band being relatively small. Within the 
present approximation, the ZiPberman theory differs 
from the Lifshitz-Kosevich theory primarily in the 
(PH) dependence. 

Amplitudes computed from Eqs. (15) and (16) are 
given in Table IX. Clearly the values given by the 
Lifshitz-Kosevich theory are too small by one-to-two 
orders of magnitude. The results of ZiPberman theory 
agree in order of magnitude with the experimental data 
as shown in Table IX. 

V. CONCLUSION 

The results of the present study of galvanomagnetic 
effects and band structure of antimony are summarized 
as follows: 

(i) The electron Fermi surface as mapped from the 
dependence of the Shubnikov-de Haas oscillations on 

TABLE IX. Amplitudes of Shubnikov-de Haas oscillations. 

H <ril|exp flfl2|exp cril|L-K <T121L-K 
(kG) ( Q - ' - c m " 1 ) ( S r i - c m - 1 ) ( f i - i - c m " 1 ) (S J - ' - c r a ' 

5l2|L-K 5 u | z i l 
S - i - c m - i ) ( Q - i - c m " 1 ) 

17.8 16.6 
16.9 17.2 
15.9 26.1 
14.8 36.8 
13.6 24.3 

0.64 
0.64 
0.64 
0.63 
0.62 

9.1 XlO-a 
9 .5X10-3 
1.0X10-2 
1.1X10-2 
1.2X10-2 

56 
45 
37 
29 
22 

crystal orientation is in good accord, within experi­
mental error, with previous studies. The results showed 
the tilted three-ellipsoid model of Shoenberg to be satis­
factory for electrons. The determination of the hole 
Fermi surface was ambiguous because the periods at 
certain orientations of the crystal with respect to the 
magnetic field could not be measured. The data were 
compatible not only with a three-ellipsoid Fermi surface 
but with more complicated shapes as well. 

(ii) The nonoscillatory parts of the conductivities 
were analyzed on the basis of the Sondheimer-Wilson 
theory for a two-band model. Data for each conduc­
tivity tensor element were fitted separately and ac­
curately ; however, the separate fits gave rise to slightly 
different saturation fields for the different conductivity 
elements. In addition, these data produced values for 
carrier orbit shape parameters in disagreement with the 
values obtained in the Shubnikov-de Haas oscillations 
study. The discrepancies are attributed to the Sond­
heimer-Wilson theory being too great an idealization 
for detailed application to antimony. 

(iii) The densities of electron and hole carriers were 
found to be equal but with the electron mobility in the 
binary direction five times that of the holes (H parallel 
to the trigonal direction). 

(iv) The amplitude of Shubnikov-de Haas oscilla­
tions was found to be much larger in an than in an. 
These amplitudes are one-to-two orders of magnitude 
larger than explainable by the Lifshitz-Kosevich theory 
but are in order-of-magnitude agreement (for an only) 
with the ZiPberman theory. 
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APPENDIX: EXPERIMENTAL DETAILS 

The single crystal of antimony was grown by a modi­
fied Bridgman technique22,23 in a helium atmosphere. 
The antimony ingot, from which the crystal was pre­
pared, was obtained from Johnson Matthey and 
Company, Ltd. 

The single crystal obtained was cleaved in the basal 
plane at room temperature and was cut with a spark 
cutter24 under kerosene. The final size of the crystal was 
10 mmX2 mmX2 mm. The back reflection Laue photo­
graphs showed no signs of strain in the crystal. The 
crystallographic axes with respect to the specimen 
dimensions are shown in the Fig. 2. The ratio 
RZQO°K/R^.2°K was found to be 720. 

The specimen was mounted on a Lucite holder, 
directly in contact with liquid helium. This arrangement 

22 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 305 (1925). 
23 D. S. Balain, Dissertation, Louisiana State University, 1960 

(unpublished). 
24 B. S. Chandrasekhar, Rev. Sci. Instr. 32, 368 (1961). 
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also ensures the isothermal conditions under which this 
experiment was done. The connections for current and 
potential leads were made with No. 34 Formvar insu­
lated copper wire soldered with (Bi-Cd) eutectic 
mixture.25 

The Dewar flask for liquid helium was described else­
where.26 The potentials were measured with a Rubicon 
potentiometer, the off-balance of which was recorded on 
a Brown Recorder after amplification with a low-
impedance Becker D. C. Amplifier. The currents passed 

25 Colin J. Smithells, Metal Reference Book (Interscience Pub­
lishers, Inc., New York, 1955), 2nd ed., Vol. 11, p. 959. ^ 

26 J. R. Sybert, Dissertation, Louisiana State University, 1963 
(unpublished). 

through the crystal were of the order of 500 mA in the 
low field and 50 mA in the high field. 

The electromagnet, for the field range of 130 G to 
18 kG was an iron core Weiss magnet with 8-in.-diam 
pole pieces separated by lf-in. air gap. It could be 
rotated through 360° about its vertical axis. The calibra­
tion of the field was made with a nuclear resonance 
Gaussmeter. 

For the lower ranges of the field,27 a pair of Helmholtz 
coils were used which were calibrated with a ballistic 
galvanometer. 

27 R. J. Gillingham, S. J., Dissertation, Louisiana State Uni­
versity, 1963 (unpublished). 


